Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor.
نویسندگان
چکیده
Growth cone motility is regulated by changes in actin dynamics. Actin depolymerizing factor (ADF) is an important regulator of actin dynamics, and extracellular signal-induced changes in ADF activity may influence growth cone motility and neurite extension. To determine this directly, we overexpressed ADF in primary neurons and analyzed neurite lengths. Recombinant adenoviruses were constructed that express wild-type Xenopus ADF/cofilin [XAC(wt)], as well as two mutant forms of XAC, the active but nonphosphorylatable XAC(A3) and the less active, pseudophosphorylated XAC(E3). XAC expression was detectable on Western blots 24 hr after infection and peaked at 3 d in cultured rat cortical neurons. Peak expression was approximately 75% that of endogenous ADF. XAC(wt) expression caused a slight increase in growth cone area and filopodia but decreased filopodia numbers on neurite shafts. At maximal XAC levels, neurite lengths increased >50% compared with controls infected with a green fluorescent protein-expressing adenovirus. Increased neurite extension was directly related to the expression of active XAC. Expression of the XAC(E3) mutant did not increase neurite extension, whereas expression of the XAC(A3) mutant increased neurite extension but to a lesser extent than XAC(wt), which was partially phosphorylated. XAC expression had minimal, if any, impact on F-actin levels and did not result in compensatory changes in the expression of endogenous ADF or actin. However, F-actin turnover appeared to increase based on F-actin loss after treatment with drugs that block actin polymerization. These results provide direct evidence that increased ADF activity promotes process extension and neurite outgrowth.
منابع مشابه
Protein Kinase C Actin-binding Site Is Important for Neurite Outgrowth during Neuronal Differentiation
We have previously shown that protein kinase C (PKC ) induces neurite outgrowth via its regulatory domain and independently of its kinase activity. This study aimed at identifying mechanisms regulating PKC -mediated neurite induction. We show an increased association of PKC to the cytoskeleton during neuronal differentiation. Furthermore, neurite induction by overexpression of full-length PKC i...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملKLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner.
The actin-based cytoskeleton is essential for the generation and maintenance of cell polarity, cellular motility, and the formation of neural cell processes. MRP2 is an actin-binding protein of the kelch-related protein family. While MRP2 has been shown to be expressed specifically in brain, its function is still unknown. Here, we report that in neuronal growth factor (NGF)-induced PC12 cells, ...
متن کاملKLHL1/MRP2 Mediates Neurite Outgrowth in a Glycogen Synthase Kinase 3 -Dependent Manner
The actin-based cytoskeleton is essential for the generation and maintenance of cell polarity, cellular motility, and the formation of neural cell processes. MRP2 is an actin-binding protein of the kelch-related protein family. While MRP2 has been shown to be expressed specifically in brain, its function is still unknown. Here, we report that in neuronal growth factor (NGF)-induced PC12 cells, ...
متن کاملDynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension
Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2000